Python读取表格数据

本文介绍了使用Python两种方法读取CSV文件,重点展示了如何将时间数据转换为标准日期格式。第一种方法使用numpy和datetime模块,第二种则通过csv模块逐行读取。适合数据预处理和时间序列分析初学者。
摘要由CSDN通过智能技术生成

第一种

import numpy as np
import datetime as dt
def conver_data(datas):
    #把时间转换成字符串类型
    s_data=str(datas,encoding="utf-8")
    #去除前后多余的空格、回车符     去空
    da=dt.datetime.strptime(s_data,'%Y/%m/%d')
    #修改日期格式   '%Y/%m/%d'----'%Y-%m-%d'
    format_data=da.strftime('%Y-%m-%d')
    return format_data

filePath="C:\\Users\\Administrator\\Desktop\\BABA.csv"
"""
converters={列:函数}  把需要的列放到函数中进行加工
M8[D]:日期格式,D代表整数类型
f8:(flot64)
i1(int8)  i2(int16)  i4(int32)  i8(int64)
"""
data,open_price,higth_price,low_price,close_price=np.loadtxt(filePath,\
    delimiter=",",usecols =(0,1,3,4,5),converters ={0:conver_data},dtype ='M8[D],f8,f8,f8,f8',unpack=True)
print('data',data)
print('open_price',open_price)
print('higth_price',higth_price)
print('low_price',low_price)
print('close_price',close_price)

第二种

import csv

from numpy.lib.shape_base import row_stack
filePath="C:\\Users\\Administrator\\Desktop\\BABA.csv"
with open(filePath) as file:
    #csv模块有读的方法
    #返回一行一行的数据
    row_data=csv.reader(file)
    for row in row_data:
        #每一行的每一列
        print(row[0])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值