第一种
import numpy as np
import datetime as dt
def conver_data(datas):
#把时间转换成字符串类型
s_data=str(datas,encoding="utf-8")
#去除前后多余的空格、回车符 去空
da=dt.datetime.strptime(s_data,'%Y/%m/%d')
#修改日期格式 '%Y/%m/%d'----'%Y-%m-%d'
format_data=da.strftime('%Y-%m-%d')
return format_data
filePath="C:\\Users\\Administrator\\Desktop\\BABA.csv"
"""
converters={列:函数} 把需要的列放到函数中进行加工
M8[D]:日期格式,D代表整数类型
f8:(flot64)
i1(int8) i2(int16) i4(int32) i8(int64)
"""
data,open_price,higth_price,low_price,close_price=np.loadtxt(filePath,\
delimiter=",",usecols =(0,1,3,4,5),converters ={0:conver_data},dtype ='M8[D],f8,f8,f8,f8',unpack=True)
print('data',data)
print('open_price',open_price)
print('higth_price',higth_price)
print('low_price',low_price)
print('close_price',close_price)
第二种
import csv
from numpy.lib.shape_base import row_stack
filePath="C:\\Users\\Administrator\\Desktop\\BABA.csv"
with open(filePath) as file:
#csv模块有读的方法
#返回一行一行的数据
row_data=csv.reader(file)
for row in row_data:
#每一行的每一列
print(row[0])